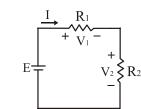
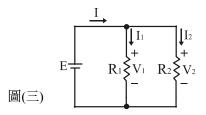
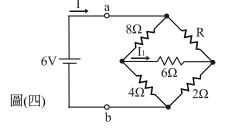

第一部份:基本電學

- 1. 某一 2 馬力發電機輸入電壓有效値爲 110 V,若其效率爲 85%,則其輸入電流有效値約爲多少?
 - (A) 13 A
- (B) 14 A
- (C) 15 A
- (D) 16 A
- 2. 如圖(一 a)所示電路,圖(一 b)(一 c)爲同材質兩導體電阻 R_1 、 R_2 之結構圖,求電路電流 I 爲多少?



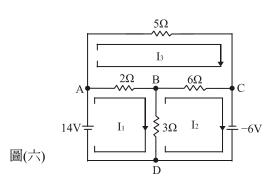

- (A) 0.2 mA
- (B) 0.4 mA
- (C) 0.6 mA
- (D) 0.8 mA

圖(二)


- 3. 如圖(二)所示電路,已知 $E=15\,V$, $V_1=10\,V$, $R_2=50\,\Omega$,求電路電流 I 及電阻 R_1 消耗的功率 P_1 分 別爲多少?
 - (A) I = 75 mA, $P_1 = 0.75 \text{ W}$
 - (B) I = 100 mA , $P_1 = 0.5 \text{ W}$
 - (C) I = 150 mA, $P_1 = 1.5 \text{ W}$
 - (D) I = 100 mA, $P_1 = 1 \text{ W}$

- 4. 如圖(三)所示電路,已知 V_1 = 12 V , R_1 = 2 R_2 ,且電流 I_2 = 4 mA , 求電流 I_1 及電阻 R_2 分別爲多少?
 - (A) $I_1 = 2 \text{ mA}$, $R_2 = 3 \text{ k}\Omega$
 - (B) $I_1 = 8 \text{ mA}$, $R_2 = 3 \text{ k}\Omega$
 - (C) $I_1 = 4 \text{ mA}$, $R_2 = 6 \text{ k}\Omega$
 - (D) $I_1 = 8 \text{ mA}$, $R_2 = 6 \text{ k}\Omega$

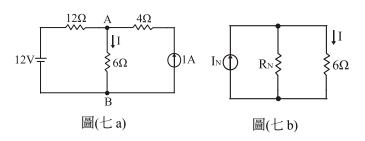
- 5. 如圖(四)所示電路,若 $I_1 = 0$,求 $a \cdot b$ 兩端的等效電阻 R_{ab} 及電流 I 分別爲多少?
 - (A) $R_{ab} = 6 \Omega$, I = 1 A
 - (B) $R_{ab} = 4 \Omega$, I = 1.5 A
 - (C) $R_{ab} = 3\Omega$, I = 2A
 - (D) $R_{ab} = 2.4 \Omega$, I = 2.5 A

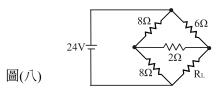

€3Ω

 6Ω

12V

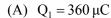
圖(五)

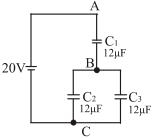

- 6. 如圖(五)所示電路,求 V, 爲多少?
 - (A) 2 V
 - (B) 4 V
 - (C) 6 V
 - (D) 10 V
- 7. 如圖(六)所示電路,下列敘述何者錯誤?
 - (A) $I_1 = 8 A$
 - (B) $I_2 = 4 A$
 - (C) $V_{AB} = 8 V$
 - (D) $V_{AC} = 20 \text{ V}$


第1頁

共7頁

- 8. 如圖(七 a)所示電路,圖(七 b)爲其諾頓 等效電路,則下列敘述何者正確?
 - (A) $I_N = 2 A$
- (B) $R_N = 3\Omega$
- (C) $I = \frac{2}{3} A$
- (D) $V_{AB} = 4 \text{ V}$


- 9. 如圖(八)所示電路,求 R_L 在最大功率轉移時 所消耗的功率爲多少?
 - (A) 27 W
- (B) 54 W
- (C) 81 W
- (D) 108 W


- 10. 某平行金屬板電容器,兩板間之距離爲 1 mm,金屬板面積爲 1 m^2 ,若該電容器以紙質爲介質,相對介質係數爲 3,求電容器之電容量約爲多少?
 - (A) 2.65 nF
- (B) 13.5 nF
- (C) 26.5 nF
- (D) 135 nF

圖(九)

11. 如圖(九)所示電路,若 C_1 、 C_2 及 C_3 電容器的初値電壓均爲0,通上20 V 電壓源後,三個電容器的電荷量分別爲 Q_1 、 Q_2 及 Q_3 ,則下列敘述何者正確?

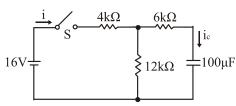
- (B) $Q_2 = Q_3 = 80 \,\mu\text{C}$
- (C) 總電容量爲18 µF
- (D) $V_{AB} = \frac{20}{3} V$

- 12. 兩電感器 $L_1 \times L_2$ 串聯總電感量為 120 mH,若將其中一個電感器接線反接後,測得總電感量變為 80 mH,已知 $L_1 = 4L_2$,則下列敘述何者正確?
 - (A) 電感量 L₁ = 40 mH

(B) 電感量 L₂ = 10 mH

(C) 互感量 M = 20 mH

- (D) 耦合係數k = 0.25
- 13. 如圖(十 a)(十 b)(十 c)所示電路,若磁通密度 B = 0.1 Wb/m²,0 < θ < 90°,導線長度 ℓ = 1 m,當通入 5 A 電流後,何種角度的受力最大?所受作用力爲多少?

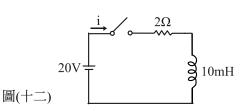


(A) $\theta = 0^{\circ}$, F = 0.5 牛頓

(B) $\theta = 30^{\circ}$, F = 0.25 牛頓

(C) $\theta = 90^{\circ}$, F = 0.5 牛頓

- (D) $\theta = 60^{\circ}$, F = 0.25 牛頓
- 14. 如圖(十一)所示電路,假設電容器 C 最初不帶電量,初值電壓爲零, 則下列敘述何者錯誤?
 - (A) 開關 S 接通瞬間 i = 2 mA , $i_C = \frac{4}{3} \text{ mA}$
 - (B) 電路穩定後,i=1 mA, $i_C=0$
 - (C) 電容器 C 充電最大値爲 16 V
 - (D) 開關 S 接通 0.9 秒後,電容電壓為 7.584 V



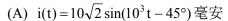
圖(十一)

第2頁 共7頁

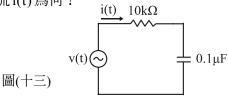
15. 如圖(十二)所示電路,若電感器在開關 S 閉合前未儲能,當開關 S 閉合 t 秒後,電路電流 i = 8.65 A

- , 求時間 t 爲多少?
- (A) 5毫秒
- (B) 10毫秒
- (C) 20 毫秒
- (D) 40 毫秒

16. 某一電壓信號 $v(t) = 8 + 6\sqrt{2}\sin(377t)V$,則此電壓信號之平均値及有效値分別爲多少?

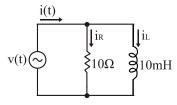

(A) 8 V , 10 V

(B) 8 V , 16 V


(C) $8 + 3\sqrt{2} \text{ V}$, 10 V

(D) $8 + 3\sqrt{2} \text{ V}$, 16 V

17. 如圖(十三)所示電路,已知 $v(t) = 100\sqrt{2} \sin(10^3 t)$ 伏特,求電路電流 i(t) 爲何?



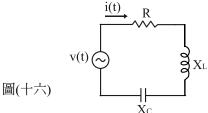
- (B) $i(t) = 10\sqrt{2}\sin(10^3 t + 45^\circ)$ 毫安
- (C) $i(t) = 10\sin(10^3 t 45^\circ)$ 毫安
- (D) $i(t) = 10\sin(10^3 t + 45^\circ)$ 毫安



18. 如圖(十四)所示電路,已知 $v(t) = 20\sin(10^3 t)$ 伏特,則下列敘述何者<u>錯誤</u>?

- (A) $I_R = \sqrt{2} A$
- (B) $I_L = \sqrt{2} A$
- (C) $i(t) = 2\sqrt{2}\sin(10^3 45^\circ) A$
- (D) $Z = 10\sqrt{2} \Omega$

- 19. 如圖(十五)所示電路,下列敘述何者錯誤?
 - (A) $Z = 12 \Omega$
 - (B) $I_1 = -6 \text{ A}$
 - (C) I = 10 A
 - (D) 功率因數 PF = 0.6


- 20. 某交流電路,已知其 $v(t) = 100\sin(\omega t + 60^\circ)$ 伏特, $i(t) = 20\sin(\omega t + 30^\circ)$ 安培,則下列敘述何者正確?
 - (A) 平均功率 P = 500 W

(B) 虚功率 Q = $500\sqrt{3}$ VAR

圖(十四)

(C) 負載爲電容性

- (D) 複數功率 S=1000 VA
- 21. 某 RC 串聯交流電路,消耗 320 W 之功率,功率因數為 0.8,若將其改為並聯,求消耗功率為多少 瓦特?
 - $(A)\ 400~\mathrm{W}$
- (B) 500 W
- (C) 533 W
- (D) 888 W
- 22. 如圖(十六)所示電路,當 $v(t) = 100\sin(2\pi \times 10^3 \times t)V$ 時, $R = 10\Omega$, $X_L = 20\Omega$, $X_C = 500\Omega$, 若改 變輸入信號頻率爲 f_c ,使電路產生諧振,則下列敘述何者**錯誤**?
 - (A) 諧振頻率 f₀ = 5 kHz
 - (B) 諧振時,功率因數 PF=1
 - (C) 諧振時,電流 I 為最大
 - (D) 諧振時,平均功率 P = 1000 W

第 3 頁

- 23. 在 R-L-C 串聯諧振電路中,下列敘述何者錯誤?
 - (A) 若 L、C 値不變,則 R 値愈大,則選擇性 Q 値愈小
 - (B) 若 R 値不變,則 $\frac{L}{C}$ 比値愈大,則選擇性 Q 値愈大
 - (C) 電阻電壓與電路電流相位差0°
 - (D) 電容電壓相位超前電路電流相位90°
- 24. 某三相 Y 接 5 馬力電動機,功率因數爲 0.8,若交流電源電壓爲 220 V,則線路電流約爲多少?
 - (A) 0.016 A
- (B) 9.8 A
- (C) 12.2 A
- (D) 22.7 A
- 25. 某三相 Y 接發電機,相序爲 abc,已知 a 相電壓 Va0=100∠0°,求線電壓 Vca 爲多少?
 - $(A)100\angle 210^{\circ}$
- (B) $100\sqrt{3} \angle 210^{\circ}$
- (C) 100∠150°
- (D) $100\sqrt{3} \angle 150^{\circ}$

第二部份:電子學

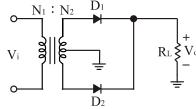
- 26. 某一負載兩端交流電壓 $v(t) = 100\sin(377t + 60^\circ)$ 伏特,流經負載之交流電流 $i(t) = 10\cos(377t 30^\circ)$, 則下列敘述何者正確?
 - (A) 最大値 $V_m = 100\sqrt{2} \text{ V}$

(B) $t = \frac{1}{180}$ 秒時的瞬間値 v(t) = 0 V

(C) 信號頻率 f =50 Hz

- (D) 電壓信號 v(t) 與電流信號 i(t) 相位差 90°
- 27. 一純矽半導體,本質濃度 $n_i = 1.5 \times 10^{10} / cm^3$,原子密度為 $5 \times 10^{22} / cm^3$,若於每 10^8 個矽原子摻入1個受體(acceptor)雜質,則下列敘述何者正確?
 - (A) 電洞濃度爲4.5×10⁵/cm³

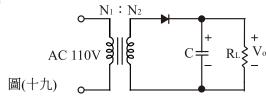
- (B) 電子濃度為5×10¹⁴/cm³
- (C) 摻雜後半導體之電性爲正電
- (D) 摻雜後半導體內部少數載子爲電子
- 28. 如圖(十七)所示電路,假設稽納(Zener)二極體 $r_z = 0$, $I_{ZK} = 1 \, \text{mA}$, $V_Z = 6 \, \text{V}$,試求稽納二極體能適當工作在 崩潰區之最小負載電阻值R, 爲多少?



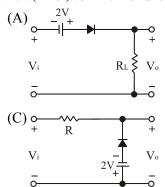
(B) $1 \text{ k}\Omega$

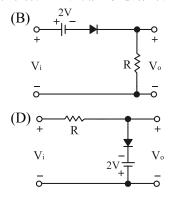
- (C) $1.2 \text{ k}\Omega$
- (D) $1.6 \text{ k}\Omega$

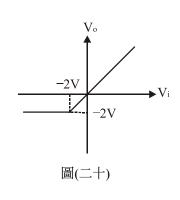
29. 如圖(十八)所示電路,若輸入交流電壓 $V_i(t) = 40\sin(377t)V$,且線圈匝數比 $N_1: N_2 = 2:1$,試問 在電阻 $R_L \perp V_o$ 的平均值 V_{dc} 及二極體的 PIV 值分別爲多少?


- (A) $V_{dc} = 6.36 \text{ V}$, PIV = 10 V
- (B) $V_{dc} = 6.36 \ V$, $PIV = 20 \ V$
- (C) $V_{dc} = 12.72 \text{ V}$, PIV = 10 V
- (D) $V_{dc} = 12.72 \text{ V}$, PIV = 20 V

30. 有一半波整流電路如圖(十九)所示,已知 $C = 100 \, \mu F$, $R = 10 \, k \Omega$,若以三用電表 DCV 50 V (不考慮負載效應),測量其輸出 V。電壓爲 10 V,則此電路輸

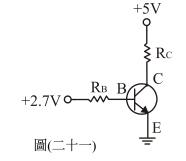

出端的漣波峰對峰值 $V_{r(P-P)}$ 爲多少?


- (A) 24 mV
- (B) 48 mV
- (C) 83 mV
- (D) 166 mV



第 4 頁

31. 如圖(二十)所示爲二極體截波器之V_i-V_o轉移特性曲線,其可能的電路爲何?



32. 有關雙極性接面電晶體(BJT)特性的敘述,下列何者錯誤?

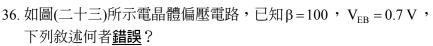
- (A) 依其摻雜結合方式,可分為 NPN 型及 PNP 型兩種
- (B) 射極(emitter)摻雜濃度最高,逆向耐壓最高
- (C) 射極與集極對調使用,增益與耐壓均會降低
- (D) NPN型BJT中,少數載子爲電洞,由熱擾動所產生

33. 有關 NPN 電晶體操作在主動區(active region)的敘述,下列何者錯誤?

- (A) B-E 接面爲順偏, B-C 接面爲逆偏
- (B) 各端(E、B、C)之電壓大小關係為 $V_B > V_C > V_E$
- (C) $\beta I_B < I_{C(sat)}$
- (D) $I_E = I_B + I_C$

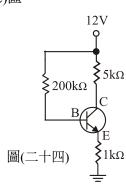
 V_{CC}

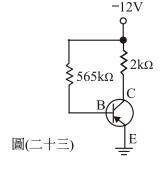
- 34. 如圖(二十一)所示,若電晶體的 β = 100, V_{BE} = 0.7 V , $V_{CE(sat)}$ = 0.2 V , 則下列各(R_B , R_C)電阻的組合,何者可以使電晶體工作於飽和狀態?
 - (A) $500 \text{ k}\Omega$, $10 \text{ k}\Omega$


(B) $250 \text{ k}\Omega$, $5 \text{ k}\Omega$

(C) $100 \text{ k}\Omega$, $10 \text{ k}\Omega$

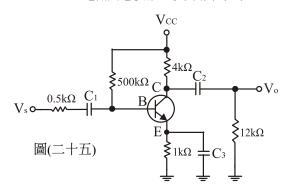
- (D) $50 \text{ k}\Omega$, $1 \text{ k}\Omega$
- 35. 如圖(二十二)所示電晶體偏壓電路,假設電晶體 Q_1 原來的工作點設計在直流負載線中央,因電晶體燒毀而更換新的電晶體 Q_2 之後,工作點移向飽和區附近,試問在不改變集極飽和電流的情況下,下列何者可以將工作點重新調整至直流負載線中央?


- (B) 增加R_B
- (C) 減少R_C
- (D) 增加R_C



- (A) $I_B = 0.02 \text{ mA}$
- (B) $V_{CE} = 8 \text{ V}$
- (C) $V_B = -0.7 \text{ V}$
- (D) 本電路工作於主動(active)區
- 37. 如圖(二十四)所示電路,已知 V_{BE} = 0.7 V , β = 100 , $V_{CE(sat)} \cong 0$,求此電路中基極電流 I_B 最接近之電流值爲多少?

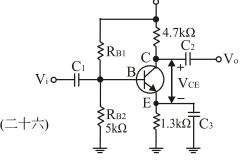
- (B) $36.5 \, \mu A$
- (C) $46.5 \mu A$
- (D) 56.5 µA



≯_{RB}

圖(二十二)

共7頁

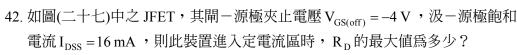

- 38. 如圖(二十五)所示電路,已知電晶體參數β=100,
 - $r_{\pi} = 2 k\Omega$,則電壓增益 $\frac{V_{o}}{V}$ 約等於多少?
 - (A) 2.4
 - (B) -3
 - (C) -120
 - (D) -150

- 39. 如圖(二十六)所示電路,已知 $V_{CC}=12~V$, $V_{BE}=0.7~V$, $V_{CE}=6~V$,假設 $\beta=200$,
 - 則在室溫下 $(27^{\circ}C)$,電壓增益 $\frac{V_o}{V}$ 約爲多少?

- (B) -47
- (C) -180
- (D) -361

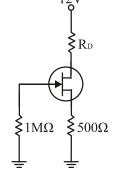
- 40. 承第 39 題,若 R_{B2} 開路,則電晶體工作於哪個區域?
 - (A) 主動(active)區

(B) 截止(cut off)區

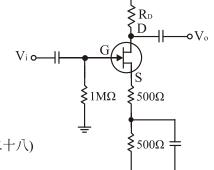

(C) 飽和(saturation)區

- (D) 歐姆區
- 41. 已知某串級放大電路,由兩級共射極放大器所組成,第一級電壓增益為 A_{vl} ,第二級電壓增益為 A_{v2} ,總電流增益 $A_i = 10$,總功率增益 $A_{p(dB)} = 40 \, dB$,若 $A_{v1} = -100$,則 A_{v2} 爲多少?
 - (A) 1

(B) 10


(C) 100

(D) 1000

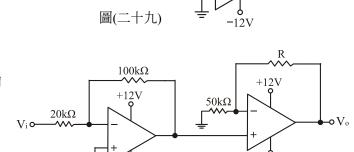

- (A) $1 k\Omega$
- (B) $2 k\Omega$
- (C) $4 k\Omega$
- (D) $8 k\Omega$

- 43. 下列關於 FET 特性的敘述,何者錯誤?
 - (A) 對 JFET 元件而言,若元件工作於飽和區,當 $V_{GS} = 0$ 時, I_{D} 的最大值為 I_{DSS}
 - (B) 對空乏型 FET 元件而言,若元件工作於飽和區,當 $V_{GS} = 0$ 時, I_{D} 的最大值為 I_{DSS}
 - (C) 對 P 通道 JFET 元件而言,當 $V_{GD} \ge V_{GS(off)}$ 時,元件工作於飽和區
 - (D) 對 N 通道增強型 MOSFET 元件而言,當 $V_{GD} \ge V_t$ 時,元件工作於歐姆區
- 44. 如圖(二十八)所示爲共源放大電路,若場效電晶體參數 $r_a = \infty$,

 $I_{DSS} = 8 \text{ mA}$, $V_{GS(off)} = -4 \text{ V}$, $V_{DS} = 12 \text{ V}$,其電壓增益 $\frac{V_o}{V_o}$ 爲多少?

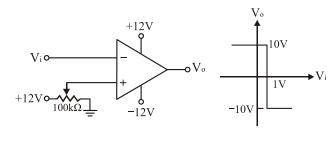
24V

- (A) -5
- (B) -10
- (C) -50
- (D) -100


圖(二十八)

第6頁

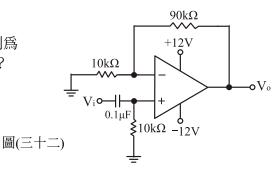
- 45. 如圖(二十九)所示電路,若 OPA 爲理想的,已知 $V_i = +2 V$, 則下列何者正確?
 - (A) $V_0 = -20 \text{ V}$,輸出未飽和
 - (B) $V_o = -20 V$,輸出波形已飽和
 - (C) $V_0 = -12 V$,輸出未飽和
 - (D) $V_0 = -12 \text{ V}$,輸出波形已飽和
- 46. 如圖(三十)所示電路,若 OPA 爲理想的,已知 $V_i = \sin(6280t) \, V$,求使 OPA 得到最大不失真輸 出信號的 R 值爲多少?
 - (A) $50 \text{ k}\Omega$
 - (B) $70 \text{ k}\Omega$
 - (C) $90 \text{ k}\Omega$
 - (D) $100 \text{ k}\Omega$
- 47. 如圖(三十一 a)所示電路中,圖(三十一 b)爲其 $V_i V_o$ 轉移特性曲線,已知 $V_i = 2\sin(6280t) \, V$ 求輸出電壓 V_o 之工作週期(duty cycle)約爲多 少?


- (B) 33%
- (C) 50%
- (D) 66%

 $10k\Omega$

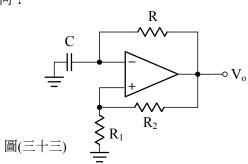
Vio-

 $100k\Omega$


圖(三十一a)

圖(三十)

圖(三十一b)


-12V

- 48. 如圖(三十二)所示電路,已知 OPA 為理想的,當頻率分別為 15.9 Hz 及 1.59 kHz 時,其電壓增益各約為多少分貝(dB)?
 - (A) 0 dB \cdot 0 dB
 - (B) 0 dB, 20 dB
 - (C) 20 dB, 0 dB
 - (D) 20 dB, 20 dB

- 49. 某信號含有 $DC(0 \text{ Hz}) \times 60 \text{ Hz} \times 1 \text{ kHz} \times 10 \text{ kHz}$ 等四種頻率,若要將 DC(0 Hz)及 60 Hz 的信號成份 去除,則應使用下列何種電路較爲恰當?
 - (A) 低通濾波器(low pass filter)

- (B) 高通濾波器(high pass filter)
- (C) 帶通濾波器(band pass filter)
- (D) 帶止濾波器(band reject filter)
- 50. 如圖(三十三)所示電路,當電路發生振盪時,輸出V。波形爲何?
 - (A) 正弦波
 - (B) 三角波
 - (C) 方波
 - (D) 鋸齒波

共7頁 第7頁